குறியிடப்பட்டது
  • ஜெ கேட் திறக்கவும்
  • ஜெனமிக்ஸ் ஜர்னல்சீக்
  • கல்வி விசைகள்
  • JournalTOCகள்
  • உலகளாவிய தாக்கக் காரணி (GIF)
  • சீனாவின் தேசிய அறிவு உள்கட்டமைப்பு (CNKI)
  • Ulrich's Periodicals Directory
  • RefSeek
  • ஹம்டார்ட் பல்கலைக்கழகம்
  • EBSCO AZ
  • OCLC- WorldCat
  • பப்ளான்கள்
  • மருத்துவக் கல்வி மற்றும் ஆராய்ச்சிக்கான ஜெனீவா அறக்கட்டளை
  • யூரோ பப்
  • கூகுள் ஸ்காலர்
இந்தப் பக்கத்தைப் பகிரவும்
ஜர்னல் ஃப்ளையர்
Flyer image

சுருக்கம்

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol

Snehasis Jana, Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Gopal Nayak and Rakesh Kumar Mishra

O-aminophenol has extensive uses as a conducting material and in electrochemical devices. The objective of this research was to investigate the influence of biofield energy treatment on the physical thermal and spectral properties of o-aminophenol. The study was performed in two groups; the control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated o-aminophenol samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, and Ultra violet-visible spectroscopy analysis (UV-vis). The XRD analysis showed an increase in peak intensity of the treated o-aminophenol with respect to the control. Additionally, the crystallite size of the treated o-aminophenol was increased by 34.51% with respect to the control sample. DSC analysis showed a slight increase in the melting temperature of the treated sample as compared to the control. However, a significant increase in the latent heat of fusion was observed in the treated o-aminophenol by 162.24% with respect to the control. TGA analysis showed an increase in the maximum thermal decomposition temperature (Tmax) in treated o-aminophenol (178.17ºC) with respect to the control (175ºC). It may be inferred that the thermal stability of o-aminophenol increased after the biofield treatment. The surface area analysis using BET showed a substantial decrease in the surface area of the treated sample by 47.1% as compared to the control. The FT-IR analysis showed no changes in the absorption peaks of the treated sample with respect to the control. UV-visible analysis showed alteration in the absorption peaks i.e. 211→203 nm and 271→244 nm of the treated o-aminophenol as compared to the control. Overall, the results showed that the biofield treatment caused an alteration in the physical, thermal and spectral properties of the treated o-aminophenol.